
Mark scheme - Haloalkanes

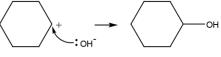
Qı	Questio n		Answer/Indicative content	Marks	Guidance
			FIRST, CHECK THE ANSWER ON ANSWER LINE	2	ALLOW $\frac{M_{\rm r} (\rm CH_3)_2 \rm CHCH_2 \rm CH_2 \rm OH}{M_{\rm r} (\rm CH_3)_2 \rm CHCH_2 \rm CH_2 \rm Br} + M_{\rm r} \rm NaOH} \times 100$
			IF atom economy = 46.1(%) award 2 marks Atom economy		ALLOW 46% up to calculator value (46.09743321) ALLOW ECF from incorrect <i>M</i> _r values
1	а	i	$= \frac{M_{\rm r} \text{ of } (CH_3)_2 CHCH_2 CH_2 OH}{M_{\rm r} (CH_3)_2 CHCH_2 CH_2 OH + M_{\rm r} \text{ NaBr}} \times 100$		Examiner's Comments
			$\mathbf{OR} = \frac{88}{190.9} \times 100 \checkmark$ $= 46.1(\%) \checkmark$	(AO1.2×1) (AO2.2 ×1)	Most candidates were able to recall the formula to calculate atom economy, however a number made errors in working out M_r values. However, some left this blank or just gave an answer without any working.
					1st curly arrow must
			ANNOTATE ANSWER WITH TICKS AND CROSSES		• go to the C of C–Br
			Curly arrows 2 marks		AND
			curly arrow from OH– to C atom of C–Br bond \checkmark	3	 start from, OR be traced back to any point across width of lone pair on O of OH–
			dipole shown on C–Br bond, $C^{\delta+}$ and $Br^{\delta-}$, AND curly arrow from C–Br bond to Br atom \checkmark	(402.5×1)	• OR start from – charge on O of -OH ion
			$(CH_3)_2 CHCH_2 \longrightarrow C^{+}_{Br} \delta^{-}$	(AO2.5×1)	C C
			ਾਂਹਸ IGNORE incorrect R groups for curly arrow marks	(AO1.1×1)	(Lone pair NOT needed if curly arrow shown from O–)
		ii	IGNORE presence of Na+ but OH– needed		2nd curly arrow must start from, OR be traced
			i.e. Na+OH–can be allowed if criteria met		back to, any part of C–Br bond and go to Br $C \xrightarrow{\beta}_{r} C \xrightarrow{\beta}_{r} C \xrightarrow{\beta}_{r} C \xrightarrow{\beta}_{r}$
			Products 1 mark correct organic product AND Br– √		ALLOW S _N 1 mechanism for 2 curly arrow marks
			н (CH ₃) ₂ CHCH ₂ ——С——ОН + _{Br} =		First mark Dipole shown on C–Br bond, C ^{ŏ+} and Br ^{ŏ−} , AND curly arrow from C−Br bond to Br atom √ ^H
			H IGNORE presence of Na⁺ but Br⁻ needed i.e. Na⁺Br⁻can be allowed BUT NaBr does NOT show Br–	(AO2.5×1)	$(CH_3)_2CHCH_2 \longrightarrow (CH_3)_2CHCH_2 \longrightarrow (CH_3)_2CHCH_2 \longrightarrow (CH_3)_2CHCH_2 \longrightarrow (CH_3)_2CHCH_2 \oplus (CH_$
			NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows		$(CH_3)_2CHCH_2 \longrightarrow C^+ (CH_3)_2CHCH_2 \longrightarrow C^+ OH$
					Use curly arrow criteria in guidance above

					Examiner's Comments Mechanisms were often seen showing curly arrows going in the wrong direction and between the wrong bonds and atoms, charges and dipoles were often incorrect, and partial changes used where full charges were required. Writing mechanisms is an important skill in organic chemistry so it is vital that time is spent practising writing them out and fully understanding the significance of the curly arrow.
					Examiner's Comments
		iii	Nucleophilic substitution \checkmark	1 (AO1.1×1)	Many candidates gave the correct mechanism here, with common incorrect responses being other types of mechanism, substitution only, or isomerism.
					IGNORE reference to bond polarity
					Examiner's Comments
	b		Rate slower with chloroalkane ORA ✓ C–C/ bond is stronger than C–Br bond OR C–C/ bond has greater bond enthalpy OR more energy needed to break C–C/ bond ✓	2 (AO3.1×1) (AO2.5×1)	Very few candidates gained both marks here. It was not enough here to just state faster/slower without specifying which haloalkane they were referring to. It was also important to specify the C-X bond not just vague reference to the chlorine or bromine bond. Many described the difference in bond polarity so had the wrong order. Some were more general and discussed the reactivity of bromine and chlorine themselves.
			Total	8	
2		i	Curly arrow from HO ⁻ to carbon atom of C-I bond \checkmark Dipole shown on C-I bond, $C^{\delta+}$ and $I^{\delta-}$ AND curly arrow from C-I bond to I atom \checkmark CH CH CH CH $\overset{\delta+}{-}$ $\overset{f}{-}$ \overset	3(AO2.5×3)	ANNOTATE ANSWER WITH TICKS AND CROSSES NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must • go to the C of C–I AND • start from, OR be traced back to any point across width of lone pair on O of OH ⁻ $: \overline{OH} : \overline{OH} : \overline{OH} : \overline{OH} : \overline{OH}$ • OR start from – charge on O of -OH ion $: \overline{OH} : \overline{OH} : \overline{OH}$
					(Lone pair NOT needed if curly arrow shown from O ⁻)

	H CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂		2nd curly arrow must start from, OR be traced back to, any part of C–I bond and go to I $\begin{array}{c} \hline \\ \hline $
			arrows are precisely drawn. Connectivity is good on the organic product and I ⁻ identified as the additional product.
ii	Time for precipitate to appear √	1(AO3.3)	Time AND precipitate required <i>Question asks for measurement</i> Examiner's Comments The question asked for the measurement AND observation, many students did not answer both parts and therefore did not gain any marks. "How fast" and "how long" were not given as they did not detail the measurement.
	C–I bond is weaker (than C–Br bond) OR C–I bond has a lower bond enthalpy (than C–Br bond) √ Carbon – halogen bond breaks √	2(AO3.2)	For 2 marks, ALLOW C–I is broken more easily (than C–Br) as the bond is weaker There must be a comparison between C–Br and C–I bonds Examiner's Comments Answers were too vague to be given in most cases. Candidates referred to bonds being broken or overcome, but did not specify C-I bonds breaking, or discussed iodine and bromine in terms of reactivities.

	e.g. the weaker the bond the faster the reaction stronger bond takes longer to break lower bond enthalpy reacts faster		IGNORE references to halogens as elements: <i>i.e.</i> chlorine is less reactive than bromine etc.
	Correct comparison of rate of reaction for at least two C–Hal bonds e.g.		DO NOT ALLOW chloride, bromide and iodide
	C–F bond is hydrolysed slow est C–I bond is hydrolysed faster than C–Br C–Br has shorter reaction time than C–Cl		IGNORE references to bond length, polarity and electronegativity
	OR		Examiner's Comments
	Correct comparison of C–Hal bond strength/enthalpy of at least two of C–Hal bonds e.g. C–I bond is the weak est C–I has lower bond enthalpy than C–Br C–Br is broken more easily/readily than C–CI		This question required candidates to link the rate of hydrolysis with the strength of the carbon-halogen bond present in different haloalkanes. Higher ability candidates were able to do this succinctly, making clear comparisons between different C-X bonds. Exemplar 5 shows a commonly seen one mark response.
	C–Hal bond strength decreases down group (7) \checkmark		Exemplar 5
			The bard straight of the corton-ladogo boat affects state of hydrolysis. The weaks, the bod, the fashe the rate of hydrolysis. This is because less enough to regulate to break the band.
			This response correctly describes the effect of bond strength on the rate of hydrolysis and receives one mark. To score the second mark a comparison of two different carbon-halogen bonds is required.
	Curly arrow from HO ⁻ to carbon atom of C–CI bond \checkmark		
	Dipole shown on C–Cl bond, C^{δ^+} and Cl^{δ^-}		ANNOTATE ANSWER TICKS AND CROSSES
	curly arrow from C–CI bond to CI atom \checkmark		NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows
b	δ+ Cl ^{δ-}	3	1st curly arrow must
	GNORE presence of Na ⁺ but OH ⁻ needed i.e. Na ⁺ OH ⁻ can be allowed if criteria met		 go to the C of C–Cl AND start from, OR be traced back to any point across width of lone pair on O of OH⁻ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	Correct organic product AND C⊢ √		

((((о́н о́н о́н -OH + CI IGNORE presence of Na⁺ but Cl⁻ needed i.e. Na⁺Cl⁻ can be allowed BUT NaCl does NOT show Cl--à c-à c-à **ALLOW** S_N¹ mechanism First mark Second mark carbocation OR OH-Third mark **Examiner's Comments** Exemplar 6 *cyclohexmol*

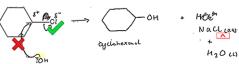

OR start from – charge on O of -OH ion

(Lone pair **NOT** needed if curly arrow shown from O⁻) 2nd curly arrow must start from, OR be traced back to, any part of C-Cl bond and go to Cl

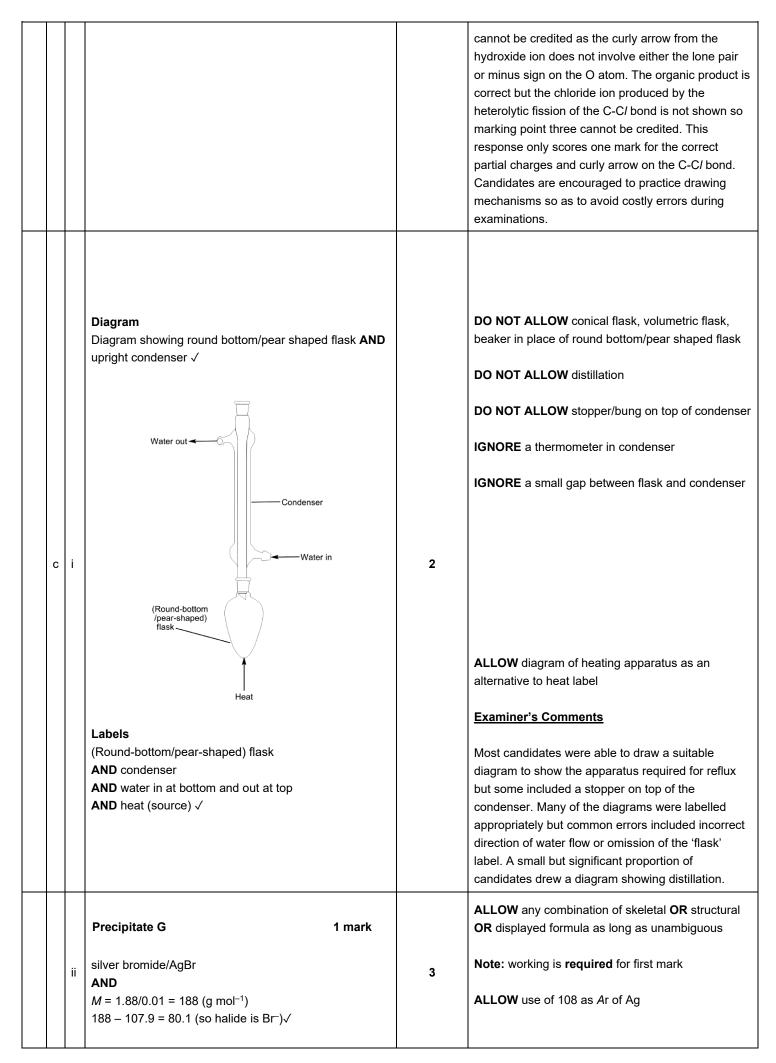
Dipole shown on C–Cl bond, $C^{\delta+}$ and $Cl^{\delta-}$, AND curly arrow from C–Cl bond to Cl atom \checkmark

+ Cl⁻

Correct carbocation AND curly arrow from HO- to

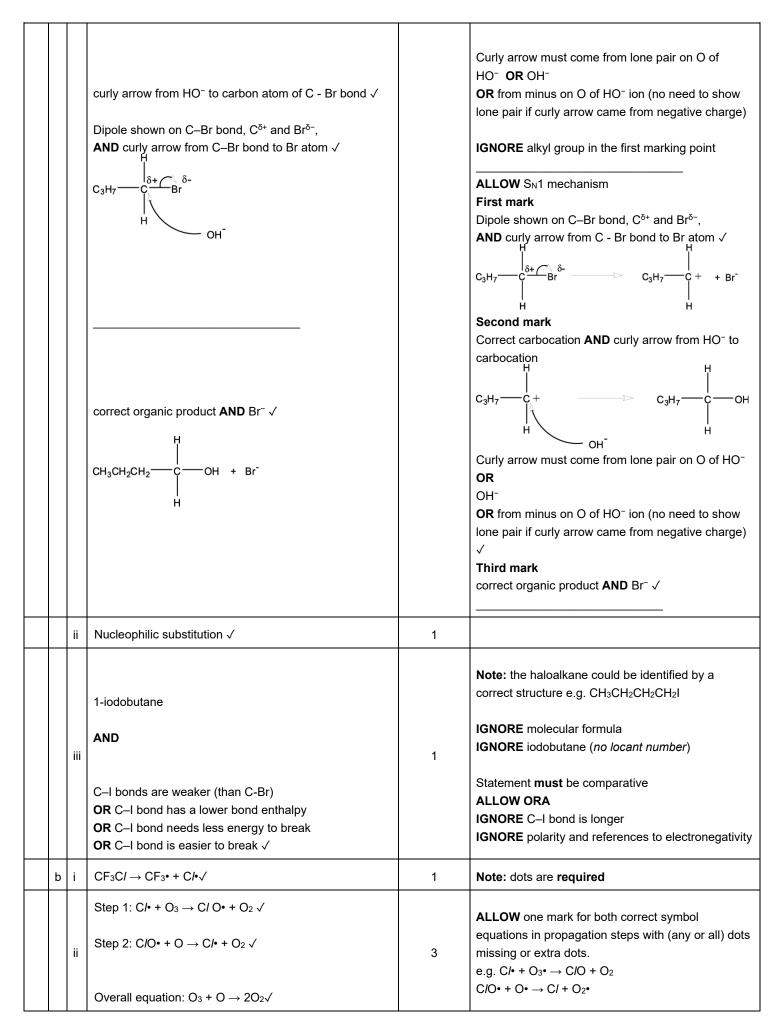


Curly arrow must come from lone pair on O of HO-


OR from minus on O of HO⁻ ion (no need to show lone pair if curly came from negative charge) \checkmark

Correct organic product **AND** Cl[−] ✓

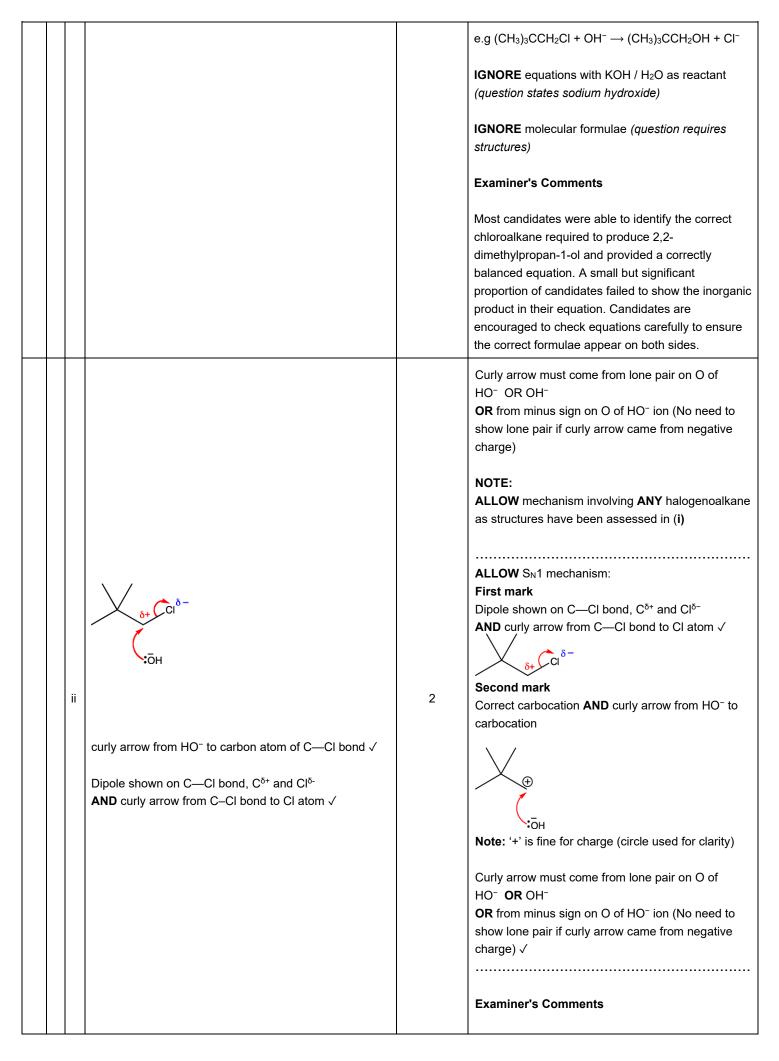
Candidates were very familiar with this nucleophilic substitution mechanism. Consequently the majority of candidates scored two or three marks. Common errors included inaccurate curly arrows from the hydroxide ion and failure to show the chloride ion as a product. Exemplar 6 highlights both of these.


This response demonstrates the two most common errors seen in this part. The first marking point

		Alcohol F and Haloalkane E 2 marks E and F clearly identified		Note: E and F can be identified by correct name or structure BUT IGNORE incorrect names
		F/alcohol: butan-2-ol $H_{3}C \xrightarrow{H} OH H_{3}C \xrightarrow{H} CH_{3}$ $H_{3}H H$		Examiner's Comments This question, requiring candidates to analyse the information to identify compounds E , F and G , discriminated well. Many candidates deduced that G was a silver halide but not all provided working to
		 E/haloalkane: E is haloalkane of C₄H₉X with same halogen as G AND same carbon chain as F √ 		back up their choice of AgBr. Some candidates appeared to guess and AgC/ was commonly seen. Some candidates used the molar mass of \mathbf{F} provided to deduce the molecular formula of C ₄ H ₁₀ O but lower ability responses did not process this further. Higher ability candidates identified \mathbf{F} as butan-2-ol, showing the chiral carbon clearly. Other alcohols were also seen including butan-1-ol and methylpropan-2-ol. The highest ability candidates linked all the information and provided a structure for \mathbf{E} that was consistent with their suggestions for \mathbf{F} and \mathbf{G} .
		Total	10	
5	i	Reflux Nucleophilic substitution (1) Mechanism Curly arrow from lone pair on OH ⁻ to δ+ carbon atom (1) Curly arrow and dipole on C–I bond (1) Correct products (1)	4	The curly arrow must start from the oxygen atom of the OH ⁻ and must start from either the lone pair or the negative charge
		Total	5	
6	i	OH V	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
		Acid (catalyst) AND heat √		ALLOW (heat under) reflux ALLOW H ₃ PO ₄ OR H ₂ SO ₄ OR H+ DO NOT ALLOW other named acids IGNORE concentration / pressure

					IGNORE water / steam
					Examiner's Comments
					Candidates who were able to give the structure of the intermediate were not always able to state the conditions for the elimination of water from an alcohol. The presence of an acid catalyst and heat are stated in the specification. Some candidates confused this reaction with addition reactions of alkenes suggesting that a Ni catalyst or the presence of steam is required.
					If there is an alternative answer, check to see if there is any ECF credit possible
					ALLOW 3 SF: 0.0338 up to calculator value of 0.033763044 correctly rounded Common ECFs (2 marks)
			FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 44.4(%) award all 3 marks for calculation		 Incorrect M_r → incorrect moles of cyclohexene Incorrect M_r → incorrect moles of 2- bromocyclohexane
		ii	Amount cyclohexene (<i>m</i> / <i>M</i>) = 1.23/82 OR 0.0150 mol ✓ Amount of brnmocyclohexane (<i>m</i> / <i>M</i>) = 5.50/162.9 OR 0.0338 mol ✓	3	e.g. ALLOW two marks for use of incorrect mass of bromocyclohexane with other calculations correct e.g. $(5.50/163) = 0.033742331 \rightarrow 44.5\%$
			 - 5.50/102.9 OK 0.0538 mol√ % yield = (0.0150/0.0338) × 100 = 44.4(%) √ 		ALLOW calculation in mass <i>Theoretical mass yield:</i> $m(C_6H_{10}) = 0.0338 \times 82 = 2.77 \text{ g}$ % yield = (1.23/2.77) × 100 = 44.4%
			Final answer must be to 3 significant figures		Examiner's Comment:
					Although some candidates simply calculated 1.23/5.50, most followed an effective strategy for the calculation of percentage yield. Many gained full marks but a large number of candidates relied on the application of error carried forward when they made one or more careless errors during the calculation of molar mass and / or moles. Intermediate answers were sometimes rounded to 2 significant figures and marks were lost by candidates who presented their final answer to 2 or 4 significant figures.
			Total	5	
7	а	i		3	ANNOTATE ANSWER WITH TICKS AND CROSSES

4.2.2 Haloalkanes



4.2.2 Haloalkanes

		 FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 9.98×10^4 award 3 marks $n(Cl^{\bullet}) = \frac{1}{35.5} = 0.02817 \text{ (mol)}$ $n(O_3) = \frac{135000}{48} = 2812.5 \text{ (mol)} $ $n(Cl^{\bullet}) : n(O_3) = \frac{2812.5}{0.02817} = 9.98 \times 10^4 $ Must be in standard form AND to 3SF	3	If there is an alternative answer, check to see if there is any ECF credit possible ALLOW 0.0282 up to calculator value of 0.02816901408 correctly rounded to 3 or more sig. fig. ALLOW 3SF: 2810 up to calculator value of 2812.5 correctly rounded Note: use of 0.0282 mol C/• gives 9.97 × 10 ⁴
		Total	12	ANNOTATE ANSWER WITH TICKS AND CROSSES
				ALLOW $\frac{29.29}{12.0}$: $\frac{5.70}{1.0}$: $\frac{65.01}{79.9}$
				Evidence could include a calculation of the relative mass of C ₃ H ₇ Br as 122.9 linking to M_r being less than 150
		Empirical / molecular formula 3 marks Mole ratio C : H : Br is 2.44 : 5.70 : 0.814 \checkmark (Empirical formula) = C ₃ H ₇ Br \checkmark		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
				DO NOT ALLOW missing H atom(s) in a displayed
8	а	QWC (Molecular formula) = C_3H_7Br AND relative mass linked	5	formula for one structure but ALLOW missing H atoms in subsequent structure
		to 150 evidence √		Note: structures from an incorrect molecular formula will be credited on their merits. Please consult TL for advice on how to mark the subsequent parts of this question
		Structural isomers 2 marks		Examiner's Comments
		CH₃CH2CH2Br √ CH₃CHBrCH₃ √		Calculation of empirical formula has always been a strength of candidates at this level. Consequently the vast majority were able to deduce the structures of the two isomers correctly. A significant number of candidates failed to secure full marks as they did not link the M_r of the empirical formula with the information about the M_r of the isomers being less than 150. Some candidates tried to use the value of 150 to determine the formula of C and D , ultimately ending up with an incorrect answer. However, error carried forward marks were allowed through

			subsequent parts of this question where appropriate.
			ANNOTATE ANSWER WITH TICKS AND CROSSES
b i	Infrared for G 2 marks	6	LOOK ON THE SPECTRUM for labelled peaks which can be given credit
	1700 cm ^{−1} AND C=O/carbonyl group √		ALLOW ranges from <i>Data Sheet</i> : C=O within range 1640–1750 cm ⁻¹ ;
	(broad) 2300–3600 cm ⁻¹ AND O–H in carboxylic acid \checkmark		(broad) O-H within range 2500-3300 cm ⁻¹
	Structures 3 marks		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
i	CH ₃ CH ₂ CH ₂ OH √		ALLOW CH ₃ CH ₂ CO ₂ H for carboxylic acid
	CH₃CHOHCH₃ √		IGNORE names
	CH3CH2COOH ✓		IGNORE labels
			DO NOT ALLOW missing H atom(s) in a displayer formula for one structure but ALLOW missing H atoms in subsequent structures
			ALLOW correct structural OR displayed OR skele formula OR mixture of the above in equation Examiner's Comments
i	Equation for formation of G 1 mark		Candidates were well prepared for a structural determination question and examiners were encouraged by the number of high quality of responses to this question. Most candidates were
	$C_{3}H_{8}O + 2[O] \rightarrow C_{3}H_{6}O_{2} + H_{2}O \checkmark$		able interpret the key peaks in the IR spectrum ar identified the O-H bond of a carboxylic acid and C=O bond accurately. Most candidates identified three structures correctly. Only the strongest responses included a correct equation for the formation of G by oxidation of E . Many responses failed to include this and others often had H ₂ as th inorganic product. Candidates are advised to revis oxidation reactions of alcohols thoroughly as it is often the case that incorrect equations are frequently seen in responses to exam questions.
ii		2	ANNOTATE ANSWER WITH TICKS AND CROSSES

		2 marks for correct ester. CH ₃ CH ₂ COOCH(CH ₃) ₂ √√ Award 1 mark for: CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₃ OR Ambiguous ester: CH ₃ CH ₂ COOC ₃ H ₇ √		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW C ₂ H ₅ CO ₂ CH(CH ₃) ₂ IF there is one bond and its H missing from the correct ester award 1 mark Examiner's Comments Most candidates were able to show the structure of the ester formed from propanoic acid (G and propan-2-ol (F) correctly. Some candidates used the incorrect alcohol, propan-1-ol (E) and such responses received only one of the two marks available.
		Total	13	
9	i	Thunderstorms / lightning AND aircraft √	3	IGNORE car engines Examiner's Comments This question required candidates to state two sources of nitrogen oxides in the stratosphere. Whilst most candidates identified one, this was often accompanied by vague or irrelevant statements such as 'car engines' or 'the burning of fossil fuels'. Consequently only the strongest candidates scored in this part.
	ii	$NO + O_3 \rightarrow NO_2 + O_2 \checkmark$ $NO_2 + O \rightarrow NO + O_2 \checkmark$	2	ALLOW NO ₂ + O ₃ \rightarrow NO + 2O ₂ IGNORE dots IGNORE O + O ₃ \rightarrow 2O ₂ IGNORE 2O ₃ \rightarrow 3O ₂ Examiner's Comments The majority of candidates were able to provide the two equations that describe the catalytic role of NO in ozone depletion. A small but, significant proportion, of candidates provided equations involving N atoms.
		Total	3	
1 0	i	CI + NaOH	1	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW equation with OH⁻ as reactant and Cl⁻ product

				The mechanism of the hydrolysis of a primary halogenoalkane was well known and consequently most candidates scored both marks. A small, but significant, proportion of candidates started their curly arrow from the H atom of the hydroxide ion. Candidates should be advised to take care when drawing mechanisms to ensure curly arrows are used accurately.
		Total	3	
1 1	i	C₂H₅O √	1	ALLOW elements in any order DO NOT ALLOW any other answer <u>Examiner's Comments</u> This part was answered well by most candidates. Some candidates however wrote the molecular rather than the empirical formula, or attempted to show the empirical formula as C ₂ H ₄ OH instead of C ₂ H ₅ O.
	ii	Compound E: $ \begin{array}{c} H & CH_3 \\ Br & CH_3 \\ H & CH_3 \\ \end{array} $ Stage 1: Compound E: Bromine/Br ₂ \checkmark NaOH/KOH OR OH ⁻ \checkmark Stage 2: Only award if intermediate contains at least one halogen atom	3	For structures: ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above ALLOW dichloro/diiodo compound IGNORE connectivity of bonds to CH3 ALLOW chlorine/Cl2 OR iodine/l2 IGNORE conditions, e.g. u.v. DO NOT ALLOW H2O IGNORE conditions NOTE: Max of 2 marks available for monobrominated intermediate 1 mark Reagent: HBr AND OR BrCH2CH(CH3)2Br OR BrCH2CH(CH3)2 1 mark Intermediate: CH3C(CH3)2Br OR BrCH2CH(CH3)2 AND Reagent: NaOH Examiner's Comments

					This demanding part was answered poorly by weaker candidates and was good for differentiating higher ability candidates. The mark scheme allowed some credit for using a hydrogen halide to obtain a monosubstituted haloalkane for compound E. Surprisingly, reaction mechanism names were often given instead of reagents. Many candidates seemed to guess, sometimes showing the same reagents for both stages in the hope of getting a mark. Many showed an intermediate containing no halogen atom.
			Total	4	
1 2			Propagation step 1 NO· + O ₃ \rightarrow NO ₂ · + O ₂ \checkmark	1	ALLOW one mark for both correct symbol equations with (any or all) dots missing or extra dots e.g. NO + O ₃ \rightarrow NO ₂ · + O ₂
			Propagation step 2 NO ₂ · + O \rightarrow NO· + O ₂ \checkmark	1	$NO_2 + O \rightarrow NO + O_2$. Examiner's Comments Many incorrect equations or correct symbol equations containing incorrect radicals were observed. A large proportion of candidates scored no marks on this question although the most able often provided both equations to gain two marks.
			Total	2	
1 3	а	i	Movement of an electron pair ✔	1	ALLOW movement of a lone pair OR movement of a bond Examiner's Comments Although the definition of a curly arrow was well known, many imprecise responses were seen. The most common was that a curly arrow represents the movement of electrons. Candidates should be aware that it is important to refer to an electron pair, when describing the meaning of a curly arrow.
		ii	Electron pair donor ✓	1	ALLOW can donate a lone pair Examiner's Comments Most candidates could state the correct definition. However, as with part (i) a significant number of candidates failed to specify 'electron pair' and stated that a nucleophile is an electron donor.
	b	i	$ \begin{array}{c} H_2C \\ H \\ H \\ H \\ \hline \\ H \\ \hline \\ \hline \\ H \\ \hline \\ \hline$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Curly arrow must come from lone pair on O of HO ⁻ OR OH ⁻ OR from minus sign on HO ⁻ ion (No

 				τά
				need to show lone pair if curly arrow came from negative charge on O)
		curly arrow from HO⁻ to carbon atom of C−Br bond \checkmark		ALLOW S _N 1 mechanism:
		Dipole shown on C−Br bond, $C^{\delta+}$ and Br ^{δ−} , AND curly arrow from C–Br bond to Br atom √		Dipole shown on C–Br bond, $C^{\delta+}$ and $Br^{\delta-}$, AND curly arrow from C–Br bond to Br atom \checkmark
		H_2C C CH_2OH + Br^- H correct organic product AND $Br^- \checkmark$		Correct carbocation AND curly arrow from HO ⁻ to carbocation Curly arrow must come from lone pair on O of HO ⁻ OR OH ⁻ OR from minus sign on HO ⁻ ion (No need to show lone pair if curly arrow came from negative charge on O) \checkmark
				correct organic product AND Br ⁻ \checkmark H ₂ C \downarrow H_2 C \downarrow $H_$
				$\begin{array}{c c} H_2C & H \\ \hline \\ H_2C & C \\ H & H \\ H & H \\ \hline H$
				Examiner's Comments
				This question discriminated well and most candidates were able to score at least one mark, often by showing the curly arrow and dipole on the C-Br bond. The best responses included neatly drawn structures and accurately placed curly arrows. The use of NaOH, rather than OH ⁻ , by a lot of candidates led to difficulties for both the first and third marking points. The latter of which was missed as candidates stated the inorganic product as NaBr and neglected to show the Br ⁻ ion formed from the heterolytic fission of the C—Br bond. Candidates are advised to only show the relevant ions when drawing mechanisms.
	ï	Nucleophilic substitution \checkmark	1	Examiner's Comments The majority of candidates could name this mechanism as nucleophilic substitution.
				ALLOW name or formula for each IGNORE any stated temperature and pressure
с	i	H₂ AND Ni (catalyst) ✓	1	Examiner's Comments To score the mark in this question candidates had
1			1	· · ·

			to state that both hydrogen and nickel were required for step 1. It was often the case that only one of these was stated. Although hydrogen was often seen as a reagent it was common to see an incorrect catalyst, such as H_2SO_4 .
			ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			DO NOT ALLOW any ECF in this question
	(Initiation) $C_{l_2} \rightarrow 2C/$ AND UV \checkmark		IGNORE references to temperature
	(Propagation) C₃H⁊Br + C/ → C₃H₀Br + HC/ ✔		THROUGHOUT, ALLOW correct molecular formulae OR structural OR displayed OR skeletal OR mixture of the above
	$C_{3}H_{6}Br + CI_{2} \rightarrow C_{3}H_{6}BrCI + CI \checkmark$		IGNORE dots IGNORE state symbols
ii		5	
	(Termination) Two from the three termination equations below \checkmark 2C/ \rightarrow Cl ₂		IGNORE one incorrect termination equation Examiner's Comments
	$C_3H_6Br + CI \rightarrow C_3H_6BrCI$ $2C_3H_6Br \rightarrow C_6H_{12}Br_2$ names of steps initiation, propagation and termination linked to one correct equation for each step in this mechanism \checkmark		This question required candidates to apply their knowledge of the radical substitution mechanism to form a bromochloroalkane. Examiners were encouraged by the number of excellent attempts and it is clear that candidates had prepared well for this type of question. Consequently most candidates scored four or five marks. A common reason for a candidate only scoring four marks was the omission of UV radiation as an essential condition.
iii	further substitution OR produces different termination products OR More than one termination step√	2	IGNORE mixture of organic products (<i>in question</i>) ALLOW dichloro / multichloro / dibromo / multibromo compounds formed OR an example of a further substitution product OR an example of a different termination product ALLOW more than one hydrogen (atom) can be replaced ALLOW radicals react with each other to form other products ALLOW forms different structural isomers ALLOW a hydrogen (atom) on a different carbon (atom) can be replaced
	substitution at different positions along chain \checkmark		Examiner's Comments Candidates often found it difficult to provide clearly written explanations for this question. The majorly of responses focused on further substitution or the idea of different termination steps. Only the best candidates recognised that chlorination of 1-

			bromopropane would produce a mixture of structural isomers.
	Total	14	
1 i	ANY TWO FROM THE FOLLOWING ✓ Low reactivity OR will not burn / non-flammable Volatile OR low boiling point non-poisonous OR non-toxic	1	ALLOW inert OR stable DO NOT ALLOW inflammable ALLOW it is a gas IGNORE easily compressed IGNORE not harmful IGNORE references to solubility Examiner's Comments Stronger candidates were able to identify two suitable properties of G. Although the majority were able state a single property it was often accompanied by a repetitive or incorrect statement. Vague statements, which included 'it is a CFC' and 'it is easily compressed' were also frequently seen.
	Benefit of ozone layer to life (1 mark)Ozone absorbs UV (radiation)UV at Earth's surface is reduced \checkmark ORMaintenance of O3 concentration (1 mark) $O3 \rightleftharpoons O2 + O \checkmark$ Production of radicals from G (1 mark) $CF_2Cl_2 \rightarrow Cl + CF_2Cl \checkmark$ Breakdown of O3 (2 marks)	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC For all equations, IGNORE dots on radicals Essential idea for first mark is that UV is removed in some way. ALLOW Prevents UV damaging life or stated type of damage, e.g. cataracts, skin cancer, mutation, crop damage DO NOT ALLOW ozone absorbs IR ALLOW $O_3 \rightarrow O_2 + O$ AND $O_2 + O \rightarrow O_3$ DO NOT ALLOW $2O_3 \neq 3O_2$ OR $O_3 + O \rightarrow 2O_2$ for this mark

			$C/+O_3 \rightarrow C/O+O_2\checkmark$		DO NOT ALLOW equations with other CFCs
			$\begin{array}{c} \textbf{OR} \\ ClO + O \rightarrow Cl + O_2 \\ ClO + O_3 \rightarrow Cl + 2O_2 \checkmark \end{array}$		DO NOT ALLOW $CF_2C_2 \rightarrow 2C_1 + CF_2$
					These are the only acceptable equations
					IGNORE overall equation (<i>does not show role of catalyst</i>)
					e.g. $O_3 + O \rightarrow 2O_2$
					Examiner's Comments
					This question was answered very well. Almost all candidates were able to recall the benefit of the ozone layer. The equations showing the catalytic breakdown of ozone with <i>CI</i> radicals were reproduced accurately by the majority of the cohort. Although most candidates were able explain how the concentration of ozone was maintained in words, the statements were not always accompanied by the relevant equations. The majority of candidates did not provide an equation to show the formation of <i>CI</i> radicals from G and consequently only the strongest candidates received full marks.
		iii	D √	1	ALLOW CHF ₂ C/ ALLOW B OR C ₂ F ₄ OR CF ₂ CF ₂ Examiner's Comments
					The majority of candidates suggested a suitable compound from the selection provided.
			Total	7	
1 5			The C−Br bond is weaker (than the C−C/ bond)	1	ORA
			Total	1	
1 6	а		CH ₃ CH ₃ H ₃ CCH Br Br ✓	1	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above DO NOT ALLOW molecular formula ALLOW dichloro or diiodo compound instead of the dibromo compound as the only alternatives. Examiner's Comments This question required candidates to interpret the reaction scheme and suggest an intermediate compound that could be formed from 2-methylbut-2-ene that could be also hydrolysed to give the diol

				 shown. The most able candidates demonstrated their understanding of this scheme and often suggested the correct dihalo compound. Most candidate favoured the dibromo compound however some chose to show the dichloro or diiodo compound. All of these responses received credit. A large proportion of structures suggested were obtainable from 2-methylbut-2-ene but could not be hydrolysed. These included the products of hydrogenation e.g. 2-methylbutane, or hydration e.g. 2-methylbutane, or hydration
b		Reagent A : correct halogen√ e.g. Br₂ / bromine	1	 ALLOW C/2 if dichloro compound drawn ALLOW I2 if diiodo compound drawn IGNORE state symbols Answer must match box from (a) to score Examiner's Comments This question required candidates to interpret the reaction scheme and suggest an intermediate compound that could be formed from 2-methylbut-2-ene that could be also hydrolysed to give the diol shown. The most able candidates demonstrated their understanding of this scheme and often suggested the correct dihalo compound. Most candidate favoured the dibromo compound however some chose to show the dichloro or diiodo compound. All of these responses received credit. A large proportion of structures suggested were obtainable from 2-methylbut-2-ene but could not be hydrolysed. These included the products of hydrogenation e.g. 2-methylbutane, or hydration e.g. 2-methylbutan-2-ol. Consequently only the most able candidates achieved a mark in part (b), as this was essentially dependant on part (a).
c	i	Steam AND acid catalyst √	1	ALLOW H ⁺ / named acid / H ₂ SO ₄ / H ₃ PO ₄ ALLOW H ₂ O(g) ALLOW water only if a temperature of 100 °C or above is quoted. IGNORE any temperature given with steam IGNORE pressure Examiner's Comments One would expect the majority of candidates to do well in a question which required them to state the

			reagents and conditions required for the hydration of alkenes; however this was not the case. The most able candidates provided accurate responses which referred to both steam and the acid catalyst, which was often shown to be H ₃ PO ₄ . Other candidates stated only one of the two required responses and it was common to see the acid catalyst stated alongside a temperature and pressure but with no reference to steam. Some candidates stated the reagent as H ₂ O instead of steam and this was allowed if accompanied by a temperature of over 100 °C. Candidates should be encouraged to learn reagents and conditions required for organic reactions.
ii	(compounds or molecules) having the same molecular formula but different structural formulae √	1	ALLOW different structure OR different displayed formula OR different skeletal formula for structure Same formula is not sufficient Different arrangement of atoms is not sufficient Examiner's Comments The majority of candidates were able to explain the term structural isomers.
	СH ₃ CH ₃ CH ₃ CH ₃ H ₃ C—С—С—Н H ₃ C—С—С—Н ОНН ✓ Н ОН ✓	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW any vertical bond to OH DO NOT ALLOW OH– Examiner's Comments Many candidates found this question difficult and a large number of candidates showed structures of alcohols with the molecular formula C ₅ H ₁₂ O, but that could not be formed from 2- methylbut-2-ene. Examples of these incorrect responses included 2- methylbutan-1-ol, pentan-1- ol, pentan-2-ol and pentan-3-ol. Only the most able could show the structures of both alcohols produced by the hydration of 2-methylbut-2-ene. Candidates should be reminded to check that any structures they suggest are consistent with the context of the question.
iv	Does not contain OH group(s) OR does not contain hydroxyl group(s) OR is not an alcohol ✓ Does not form hydrogen bonds with water √	2	ALLOW ORA throughout DO NOT ALLOW OH ⁻ (ions) / hydroxide (ions) 'Does not form hydrogen bonds' is not sufficient Examiner's Comments The majority of candidates were able to recognise

Total It is an electron pair donor OR can donate a lone pair ✓	8	that the key to the solubility of the isomers in water is that they contain the OH group whereas 2- methylbut-2-ene does not. Most candidates scored the second mark by accurately explaining that the OH group could form hydrogen bonds with water.
		some cases imprecise responses such as 'donates electrons' were seen. Candidates should be encouraged to give specific answers when asked to explain scientific terms.
		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE connectivity to C ₃ H ₇ throughout
$\begin{array}{c} C_{3}H_{7} \\ H \\ \hline \\ H \\ \hline \\ H \\ \hline \\ H \\ \hline \\ OCH_{3} \end{array} \xrightarrow{\delta^{-}} H_{3}CO \\ \hline \\ H \\ H \\ \hline \\ H \\ H \\ H \\ H \\ H \\ H$	3	IGNORE alkyl group in first marking point. Curly arrow must start from C–Br bond and not from C atom. Dipole must be partial charge and not full charge CH ₃ O ⁻ curly arrow must come from one lone pair on O of CH ₃ O ⁻ ion OR from negative sign on O of the CH ₃ O ⁻ ion ALLOW arrow from lone pair on O in OCH ₃ ⁻ Lone pair not required DO NOT ALLOW CH ₃ O ⁸⁻ DO NOT ALLOW incorrect connectivity of CH ₃ O group in the final product −CH ₃ O IGNORE Br ⁸⁻ as a product
$S_{N}1 \text{ mechanism}$ $H \xrightarrow{C_{3}H_{7}} H \xrightarrow{\delta^{+}} B_{r}^{\delta^{-}}$ $H \xrightarrow{C_{3}H_{7}} H \xrightarrow{C_{3}H_{7}} H_{3}CO \xrightarrow{C_{3}H_{7}} H_{3}CO \xrightarrow{I} H_{1}$		ALLOW S _N 1 mechanismDipole shown on the C—Br bond, $C^{\delta+}$ and $Br^{\delta-}$ and curly arrow from C—Br bond to the Br atom \checkmark curly arrow from CH ₃ O ⁻ to carbonium ion \checkmark correct organic product \checkmark Examiner's CommentsThis question required candidates to apply their knowledge of the nucleophilic substitution mechanism in an unfamiliar context.The first mark was awarded for showing the dipole on the C-Br bond and the curly arrow to
	It is an electron pair donor OR can donate a lone pair \checkmark $ \begin{array}{cccc} C_{3}H_{7} & & & \\ H & & & \\ \hline & & & \\ H & & & \\ \hline & & & \\ H & & \\ \hline & & & \\ \hline & & \\ H & & \\ \hline \\ \hline & & \\ \hline \hline $	It is an electron pair donor OR can donate a lone pair \checkmark 1 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

			proved to be the most accessible mark and most candidates scored it. The second mark was awarded for the curly arrow from the methoxide ion to the C atom of the C-Br bond. The more able candidates were able to show their understanding and provided accurately drawn arrows. A common misconception was to start the curly arrow from a lone pair on the C atom of the methoxide ion. The third mark was awarded for the correct organic product and was often scored by the stronger candidates. As a consequence of showing nucleophilic attack from the C atom of the CH ₃ O [−] ion, a significant number of responses showed the incorrect connectivity, as the nucleophile was joined via the C atom rather than the O atom. Unfortunately a number of candidates attempted to show the mechanism using OH [−] ions as the nucleophile rather than CH ₃ O [−] . Although they were able to score the first mark no other marks were awarded. A very small proportion of candidates chose to show the S _N 1 mechanism rather than the expected S _N 2 and full credit was allowed if the response was correct.
c	1-lodobutane increases the rate ✓ AND C—I bonds are weaker (than C—Br) OR C—I bond has a lower bond enthalpy OR C—I bond needs a smaller amount of energy to break OR C—I bond is easier to break ✓	1	All statements must be comparative ALLOW ORA IGNORE C—I bond is longer IGNORE polarity and references to electronegativity Examiner's Comments Many candidates were able to predict that the rate of the reaction would increase. In addition to this the Mark Scheme required candidates to explain this by referring to the effect of the different C-halogen bond. Most candidates were able to identify that the C-I bond would be weaker. Some candidates often referred to 1-iodobutane having weaker bonds but failed to specify which bond. Other candidates referred to the reactivity of iodine and bromine.
d	butyl ethanoate √	2	ALLOW only skeletal formula DO NOT ALLOW ECF from incorrect structure.

			Total	7	ALLOW butylethanoate ALLOW butanyl for butyl DO NOT ALLOW butly Examiner's Comments This question required candidates to interpret the information and deduce that an ester would be produced. Many candidates found this challenging but the strongest candidates were able to provide a correct skeletal formula and name for the product. Common incorrect responses showed carboxylic acid structures and names.
				I	
1 8	а		√	1	
	b	i	2Na + 2CH ₃ OH → 2Na ⁺ + 2CH ₃ O ⁻ + H ₂ \checkmark	1	ALLOW 2Na + 2CH ₃ OH \rightarrow 2CH ₃ ONa + H ₂
		ï	$\int_{CH_3O^{-}}^{\delta_{+}} \int_{B^{r}} \delta_{-} \longrightarrow \int_{O^{-}}^{\bullet_{-}} \int_{O^{-}}^{\bullet_{-}} + Br^{-}$ Curly arrow from CH ₃ O ⁻ to carbon atom of C-Br bond \checkmark Dipole shown on C–Br bond, C ^{δ_{+}} and Br ^{δ_{-}} AND curly arrow from C–Br bond to the Br atom \checkmark Products of reaction (must not be ambiguous) \checkmark	3	 ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous. The curly arrow must start from O atom of CH₃O⁻ AND must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow comes from negative charge. ALLOW S_N1 Dipole shown on C–Br bond, C^{δ+} and Br^{δ-}, and curly arrow from C–Br bond to the Br atom. Correct carbocation drawn. AND curly arrow must start from the oxygen atom of the CH₃O⁻, and must start either from a lone pair or from the negative charge.
		iii	CH₃O ⁻ donates an electron pair AND heterolytic fission ✓	1	ASSUME 'it' refers to CH₃O⁻
	с		Chemical shift, δ/ppmRelative peak areaSplitting pattern0.5-1.93Triplet✓3.0-4.32Quartet✓0.5-1.96Doublet✓	4	ALLOW δ values \pm 0.2 ppm, as a range or a value within the range
			3.0−4.3 1 Heptet ✓		ALLOW multiplet for heptet

4.2.2 Haloalkanes

	d	i	H ₃ C C C C C C C C C C C C C C C C C C C	3	The curly arrow must start from O atom of CH ₃ O ⁻ AND must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow comes from negative charge. ALLOW any unambiguous structure, skeletal, displayed, structural or combination.
		ii	CH₃O⁻ accepted a proton √	1	ASSUME 'it' refers to CH ₃ O [−]
			Total	14	
1 9		i	$\begin{array}{l} Ag^{+}+CI^{-}\rightarrow AgCI\\ \textbf{OR}\\ Ag^{+}+Br^{-}\rightarrow AgBr\\ \textbf{OR}\\ Ag^{+}+I^{-}\rightarrow AgI \end{array}$	1	
		ii	Bond enthalpy decreases C-C/ > C-Br > C-I	1	allow chlorine–carbon bonds are strongest.
		iii	Heat the test tubes in a water bath.	1	
			Total	3	